The Generalized Bin Packing Problem with Bin-Dependent Item Profits
نویسندگان
چکیده
In this paper, we introduce the Generalized Bin Packing Problem with bindependent item profits (GBPPI), a variant of the Generalized Bin Packing Problem. In GBPPI, various bin types are available with their own capacities and costs. A set of compulsory and non-compulsory items are also given, with volume and bin-dependent profits. The aim of GBPPI is to determine an assignment of items to bins such that the overall net cost is minimized. The importance of GBPPI is confirmed by a number of applications. The introduction of bin-dependent item profits enables the application of GBPPI to cross-country and multi-modal transportation problems at strategic and tactical levels as well as in last-mile logistic environments. Having provided a Mixed Integer Programming formulation of the problem, we introduce efficient heuristics that can effectively address GBPPI for instances involving up to 1000 items and problems with a mixed objective function. Extensive computational tests demonstrate the accuracy of the proposed heuristics. Finally, we present a case study of a well-known international courier operating in northern Italy. The problem approached by the international courier is GBPPI. In this case study, our methodology outperforms the policies of the company.
منابع مشابه
Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملA Polynomial Time Approximation Scheme for the Multiple Knapsack Problem
The multiple knapsack problem (MKP) is a natural and well-known generalization of the single knapsack problem and is defined as follows. We are given a set of n items and m bins (knapsacks) such that each item i has a profit p(i) and a size s(i), and each bin j has a capacity c(j). The goal is to find a subset of items of maximum profit such that they have a feasible packing in the bins. MKP is...
متن کاملTowards Bin Packing (preliminary problem survey, models with multiset estimates)
The paper described a generalized integrated glance to bin packing problems including a brief literature survey and some new problem formulations for the cases of multiset estimates of items. A new systemic viewpoint to bin packing problems is suggested: (a) basic element sets (item set, bin set, item subset assigned to bin), (b) binary relation over the sets: relation over item set as compatib...
متن کاملThe Generalized Bin Packing Problem: Models and Bounds
We present the Generalized Bin Packing Problem (GBPP), a new packing problem where, given a set of items characterized by volume and profit and a set of bins with given volumes and costs, one aims to select the subsets of profitable items and appropriate bins to optimize an objective function which combines the cost of using the bins and the profit yielded by loading the selected items. The GBP...
متن کاملBin packing with controllable item sizes
We consider a natural resource allocation problem in which we are given a set of items, where each item has a list of pairs associated with it. Each pair is a configuration of an allowed size for this item, together with a nonnegative penalty, and an item can be packed using any configuration in its list. The goal is to select a configuration for each item so that the number of unit bins needed...
متن کامل